委託試験成績(平成26年度)

担当機関名	熊本県農業研究センター畜産研究所飼料研究室
部・室名	
実施期間	平成25年度~平成26年度
大課題名	Ⅲ 水田を活用した資源作物の効率的生産・供給技術の確立
課題名	バンカーサイロによる稲発酵粗飼料の調製技術の確立
目的	熊本県の稲発酵粗飼料(イネWCS)は、水田機能を活かす飼料作物
	として作付面積が急激に拡大し、収穫後にロールベール体系によりサ
	イレージ調製が行われている。本試験では、TMRセンターや大規模
	な飼料生産組織等を想定し、生産コストの低減と省力化・効率化を図
	るために、バンカーサイロを利用したサイレージ調製体系を確立する。
I > 1 e	
担当者名	中村 寿男

1. 試験場所 水田:熊本県菊池市七城

バンカーサイロ:熊本県農業研究センター畜産研究所

2. 試験方法

前年度は、フォレージハーベスタ(CHAMPION 2200)を用い、約8 mm で切断・収穫した飼料用イネをバンカーサイロに詰込み約2ヵ月保存した。発酵品質はロールベール形態と同等でV-スコアも90点以上の良好な発酵品質を確保できた。しかし、切断長が短いため、単独で給与した場合、牛の咀嚼時間の減少が懸念されることや、長期間保存した場合の発酵品質、開封後の変敗など検討課題も残った。

そこで、本年度は、切断長を約 20mm とした場合の詰込密度や保存性、また長期保存した場合の発酵品質等を検討するとともに、収穫物を破砕するクラッシャーが付いたフォレージハーベスタを利用した収穫について評価した。

- ①調製方法:飼料イネをフォレージハーベスタで収穫後、トラックでバンカーサイロまで搬送し、大型ショベルローダーにて鎮圧を行った。
- ②使用機械名:フォレージハーベスタ (CHAMPION 3000)

トラクター (JOHN DEERE 6190) ショベルローダー (キャタピラー三菱 910F)

- ③バンカーサイロの容積: 109.8 m³ (4.75m×1.15m×20.1m)
- ④飼料用イネの品種:あきまさり、ミナミユタカ
- ⑤飼料用イネの収穫時の熟期:乳熟後期から黄熟前期
- ⑥設定切断長: 20 mm
- ⑦試 験 区:クラッシャーによる籾米の破砕、未破砕処理により2区を設定

1基のバンカーサイロにおいて、未破砕、破砕の順に詰込み各区を ビニールで区切り調製した。また、慣行法のロールベール形態を想定 してフォレージハーベスタで収穫した飼料用イネを、細断型ロールベ ーラおよびラッピングマシーンを用いてロールベールを成形した。

- ⑧調製日:平成26年9月30日10月1日
- ⑨調査項目:作業時間、詰込密度、切断長、破砕程度 (pH、有機酸については、今後実施予定)

3. 試験結果

- ①フォレージハーベスタでの飼料用イネ収穫に係る時間は平均 16 分/10 a で、水田の面積や形状による影響を受けた(表 1)。
- ②収穫した飼料用イネは破砕区で破砕割合が51%となった。また、切断長は平均約

21mmで、破砕の有無による差はみられなかった。

③バンカーサイロの詰込密度は 174 kg/mで、ロールベール (145 kg/m) および「稲発酵粗飼料生産・給与技術マニュアル」において示されている 150 kg/mより高く、高密度に調製が可能である。

4. 主要成果の具体的データ

表1 飼料用イネの収穫作業に係る時間

	フォレー	ージハーベスタ法	従来法 ¹⁾	
圃場数		10	6	
圃場面積	a	250.3	152.7	
平均圃場面積	а	25.0	25.5	
最大圃場面積	a	51.8	35.5	
最少圃場面積	а	10.9	17.8	
実作業時間 ²⁾	時間	6.8	6. 1	
フォレーシ゛ハーヘ゛スタ	時間	6.8		
コンハ゛インヘ゛ーラ	時間		3.4	
ラッヒ [°] ンク゛マシン	時間		2.8	
単位面積当たり 作業時間	分/10a	16	24	

- 1) コンバインベーラ (WB1013) によるロール体系の収穫作業
- 2) 圃場での収穫時間のみ

表2 収穫した飼料用イネの特徴

	水分含量	切断長	破砕割合
	%	cm	%
破砕	63.0	21.3	51.2
未破砕	63.0	21.5	

表3 イネWCSの乾物密度 (kg/m³)

ハ゛ンカーサイロ ¹⁾	ロールヘ゛ール2)	ロール推奨値 ³⁾
174. 4	145.4	150以上

- 1) バンカーサイロ全体の乾物密度
- 2) 8 ロールの平均値
- 3)「稲発酵粗飼料生産・給与技術マニュアル」より

5. 経営評価

作業時間は、慣行法であるコンバインベーラによるロール体系と比較し3割程度の短縮が可能であった。また、昨年度の試験において資材費等のコストは、ロールベール体系より4割程度の削減が可能であったことから、イネWCSの低コスト生産が可能である。

6. 利用機械評価

本試験で使用したフォレージハーベスタでは、切断長を $20 \, \text{mm}$ に設定したが、実切断長はほぼ設定どおりとなった。また、この切断長でも、高密度なサイレージ調製

が可能である。

今回、使用したフォレージハーベスタは、作業幅が3mと広く、クラッシャー機能もあることから、装着するトラクターは190馬力以上の能力を備えた大型のトラクターが必要となり、小面積の圃場や進入道が確保できない場合は作業が難しい。また、水田での作業となるためクローラ式タイヤのトラクターが必須となる。

7. 成果の普及

バンカーサイロを併設したTMRセンターにて実証試験を行い、現場への普及を図る。

8. 考察

昨年度は、イネWCSを切断長約8mmとして調製を行い、良好な結果を得た。本年度は、切断長を20mmと長くしたが、昨年度と同様に高密度なサイレージ調製が可能であることが明らかとなった。また、クラッシャーを用いることで、51%の籾米を破砕しており、家畜へ給与した場合の籾米の消化率の向上が期待できる。

9. 問題点と次年度の計画(県単試験にて実施)

- ①長期間の保存した場合の発酵品質を評価するため、4月以降に開封し、品質や好気的変敗等を評価する。
- ②牛へ給与した場合の反芻時間や子実排せつ率への影響を検討する。

10. 参考写真

フォレージハーベスタでの収穫

細断した飼料用イネ

トラックへの積込み

バンカーサイロへの詰込み

ショベルローダーによる鎮圧

密封後のバンカーサイロ

細断型ロールベーラによる成形

ラッピング作業